All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Almost compact and compact embeddings of variable exponent spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00564919" target="_blank" >RIV/67985840:_____/23:00564919 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21110/23:00372602

  • Result on the web

    <a href="http://https:dx.doi.org/10.4064/sm211206-24-2" target="_blank" >http://https:dx.doi.org/10.4064/sm211206-24-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm211206-24-2" target="_blank" >10.4064/sm211206-24-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Almost compact and compact embeddings of variable exponent spaces

  • Original language description

    Let Ω be an open subset of R^N, and let p,q:Ω→(1,∞] be measurable functions. We give a necessary and sufficient condition for the embedding of the variable exponent space L^p(⋅)(Ω) in L^q(⋅)(Ω) to be almost compact. This leads to a condition on Ω ,p and q sufficient to ensure that the Sobolev space WL^{1,p(⋅)} (Ω) based on L^p(⋅)(Ω) is compactly embedded in L^q(⋅)(Ω), compact embedding results of this type already in the literature are included as special cases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia mathematica

  • ISSN

    0039-3223

  • e-ISSN

    1730-6337

  • Volume of the periodical

    268

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    25

  • Pages from-to

    187-211

  • UT code for WoS article

    000834726600001

  • EID of the result in the Scopus database

    2-s2.0-85162869658