Almost compact and compact embeddings of variable exponent spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00564919" target="_blank" >RIV/67985840:_____/23:00564919 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21110/23:00372602
Result on the web
<a href="http://https:dx.doi.org/10.4064/sm211206-24-2" target="_blank" >http://https:dx.doi.org/10.4064/sm211206-24-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm211206-24-2" target="_blank" >10.4064/sm211206-24-2</a>
Alternative languages
Result language
angličtina
Original language name
Almost compact and compact embeddings of variable exponent spaces
Original language description
Let Ω be an open subset of R^N, and let p,q:Ω→(1,∞] be measurable functions. We give a necessary and sufficient condition for the embedding of the variable exponent space L^p(⋅)(Ω) in L^q(⋅)(Ω) to be almost compact. This leads to a condition on Ω ,p and q sufficient to ensure that the Sobolev space WL^{1,p(⋅)} (Ω) based on L^p(⋅)(Ω) is compactly embedded in L^q(⋅)(Ω), compact embedding results of this type already in the literature are included as special cases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia mathematica
ISSN
0039-3223
e-ISSN
1730-6337
Volume of the periodical
268
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
25
Pages from-to
187-211
UT code for WoS article
000834726600001
EID of the result in the Scopus database
2-s2.0-85162869658