Topological black holes in higher derivative gravity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00569840" target="_blank" >RIV/67985840:_____/23:00569840 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1140/epjc/s10052-023-11338-9" target="_blank" >https://doi.org/10.1140/epjc/s10052-023-11338-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjc/s10052-023-11338-9" target="_blank" >10.1140/epjc/s10052-023-11338-9</a>
Alternative languages
Result language
angličtina
Original language name
Topological black holes in higher derivative gravity
Original language description
We study static black holes in quadratic gravity with planar and hyperbolic symmetry and non-extremal horizons. We obtain a solution in terms of an infinite power-series expansion around the horizon, which is characterized by two independent integration constants – the black hole radius and the strength of the Bach tensor at the horizon. While in Einstein’s gravity, such black holes require a negative cosmological constant Λ, in quadratic gravity they can exist for any sign of Λ and also for Λ=0. Different branches of Schwarzschild–Bach–(A)dS or purely Bachian black holes are identified which admit distinct Einstein limits. Depending on the curvature of the transverse space and the value of Λ, these Einstein limits result in (A)dS–Schwarzschild spacetimes with a transverse space of arbitrary curvature (such as black holes and naked singularities) or in Kundt metrics of the (anti-)Nariai type (i.e., dS2×S2, AdS2×H2, and flat spacetime).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-09659S" target="_blank" >GA19-09659S: Exact solutions of gravity theories: black holes, radiative spacetimes and electromagnetic fields</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Physical Journal C
ISSN
1434-6044
e-ISSN
1434-6052
Volume of the periodical
83
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
180
UT code for WoS article
000940286200001
EID of the result in the Scopus database
2-s2.0-85149029704