Long-time behavior of shape design solutions for the Navier-Stokes equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00569947" target="_blank" >RIV/67985840:_____/23:00569947 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/zamm.202100441" target="_blank" >https://doi.org/10.1002/zamm.202100441</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.202100441" target="_blank" >10.1002/zamm.202100441</a>
Alternative languages
Result language
angličtina
Original language name
Long-time behavior of shape design solutions for the Navier-Stokes equations
Original language description
We investigate the behavior of dynamic shape design problems for fluid flow at large time horizon. In particular, we shall compare the shape solutions of a dynamic shape optimization problem with that of a stationary problem and show that the solution of the former approaches a neighborhood of that of the latter. The convergence of domains is based on the (Formula presented.) -topology of their corresponding characteristic functions, which is closed under the set of domains satisfying the cone property. As a consequence, we show that the asymptotic convergence of shape solutions for parabolic/elliptic problems is a particular case of our analysis. Last, a numerical example is provided to show the occurrence of the convergence of shape design solutions of time-dependent problems with different values of the terminal time T to a shape design solution of the stationary problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
1521-4001
Volume of the periodical
103
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
e202100441
UT code for WoS article
000879496700001
EID of the result in the Scopus database
2-s2.0-85141514214