Projection-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00570477" target="_blank" >RIV/67985840:_____/23:00570477 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.cam.2023.115164" target="_blank" >https://doi.org/10.1016/j.cam.2023.115164</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115164" target="_blank" >10.1016/j.cam.2023.115164</a>
Alternative languages
Result language
angličtina
Original language name
Projection-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions
Original language description
For conforming finite element approximations of the Laplacian eigenfunctions, a fully computable guaranteed error bound in the L2 norm sense is proposed. The bound is based on the a priori error estimate for the Galerkin projection of the conforming finite element method, and has an optimal speed of convergence for the eigenfunctions with the worst regularity. The resulting error estimate bounds the distance of spaces of exact and approximate eigenfunctions and, hence, is robust even in the case of multiple and tightly clustered eigenvalues. The accuracy of the proposed bound is illustrated by numerical examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Volume of the periodical
429
Issue of the periodical within the volume
September
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
115164
UT code for WoS article
000957629700001
EID of the result in the Scopus database
2-s2.0-85150189102