All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Projection-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00570477" target="_blank" >RIV/67985840:_____/23:00570477 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.cam.2023.115164" target="_blank" >https://doi.org/10.1016/j.cam.2023.115164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2023.115164" target="_blank" >10.1016/j.cam.2023.115164</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Projection-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions

  • Original language description

    For conforming finite element approximations of the Laplacian eigenfunctions, a fully computable guaranteed error bound in the L2 norm sense is proposed. The bound is based on the a priori error estimate for the Galerkin projection of the conforming finite element method, and has an optimal speed of convergence for the eigenfunctions with the worst regularity. The resulting error estimate bounds the distance of spaces of exact and approximate eigenfunctions and, hence, is robust even in the case of multiple and tightly clustered eigenvalues. The accuracy of the proposed bound is illustrated by numerical examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational and Applied Mathematics

  • ISSN

    0377-0427

  • e-ISSN

    1879-1778

  • Volume of the periodical

    429

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    115164

  • UT code for WoS article

    000957629700001

  • EID of the result in the Scopus database

    2-s2.0-85150189102