Existence of weak solutions to a diffuse interface model involving magnetic fluids with unmatched densities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00572855" target="_blank" >RIV/67985840:_____/23:00572855 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00030-023-00852-0" target="_blank" >https://doi.org/10.1007/s00030-023-00852-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00030-023-00852-0" target="_blank" >10.1007/s00030-023-00852-0</a>
Alternative languages
Result language
angličtina
Original language name
Existence of weak solutions to a diffuse interface model involving magnetic fluids with unmatched densities
Original language description
In this article we prove the global existence of weak solutions for a diffuse interface model in a bounded domain (both in 2D and 3D) involving incompressible magnetic fluids with unmatched densities. The model couples the incompressible Navier–Stokes equations, gradient flow of the magnetization vector and the Cahn–Hilliard dynamics describing the partial mixing of two fluids. The density of the mixture depends on an order parameter and the modelling (specifically the density dependence) is inspired from Abels et al. (Models Methods Appl Sci 22(3):1150013, 2011).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nodea-Nonlinear Differential Equations and Applications
ISSN
1021-9722
e-ISSN
1420-9004
Volume of the periodical
30
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
53
Pages from-to
52
UT code for WoS article
000982947400002
EID of the result in the Scopus database
2-s2.0-85159019817