The existence of UFO implies projectively universal morphisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00573345" target="_blank" >RIV/67985840:_____/23:00573345 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1090/proc/16422" target="_blank" >https://doi.org/10.1090/proc/16422</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/16422" target="_blank" >10.1090/proc/16422</a>
Alternative languages
Result language
angličtina
Original language name
The existence of UFO implies projectively universal morphisms
Original language description
Let C be a concrete category. We prove that if C admits a universally free object F, then there is a projectively universal morphism u: F -> F, i.e., a morphism u such that for any B is an element of C and tau is an element of Mor(B) there exists an epimorphism pi is an element of Mor(F, B) such that pi tau = u pi. This builds upon and extends various ideas by Darji and Matheron [Proc. Amer. Math. Soc. 145 (2017), pp. 251-265] who proved such a result for the category of separable Banach spaces with contractive operators as well as certain classes of dynamical systems on compact metric spaces. Specialising from our abstract setting, we conclude that the result applies to various categories of Banach spaces/lattices/algebras, C*-algebras, etc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
1088-6826
Volume of the periodical
151
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
3737-3742
UT code for WoS article
000987552100001
EID of the result in the Scopus database
2-s2.0-85164573623