On well-posedness of quantum fluid systems in the class of dissipative solutions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00573353" target="_blank" >RIV/67985840:_____/23:00573353 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1137/22M148985" target="_blank" >https://doi.org/10.1137/22M148985</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M148985X" target="_blank" >10.1137/22M148985X</a>
Alternative languages
Result language
angličtina
Original language name
On well-posedness of quantum fluid systems in the class of dissipative solutions
Original language description
The main objects of the present work are the quantum Navier–Stokes and quantum Euler systems, for the first one, in particular, we will consider constant viscosity coefficients. We deal with the concept of dissipative solutions, for which we will first prove the weak-strong uniqueness principle, and afterward, we will show the global existence for any finite energy initial data. Finally, we will prove that both systems admit a semiflow selection in the class of dissipative solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Volume of the periodical
55
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
2434-2466
UT code for WoS article
001038466100029
EID of the result in the Scopus database
2-s2.0-85165230469