On the motion of a large number of small rigid bodies in a viscous incompressible fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574185" target="_blank" >RIV/67985840:_____/23:00574185 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.matpur.2023.05.007" target="_blank" >https://doi.org/10.1016/j.matpur.2023.05.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matpur.2023.05.007" target="_blank" >10.1016/j.matpur.2023.05.007</a>
Alternative languages
Result language
angličtina
Original language name
On the motion of a large number of small rigid bodies in a viscous incompressible fluid
Original language description
We consider the motion of N rigid bodies – compact sets (Sε1,⋯,SεN)ε>0 – immersed in a viscous incompressible fluid contained in a domain in the Euclidean space Rd, d=2,3. We show the fluid flow is not influenced by the presence of the infinitely many bodies in the asymptotic limit ε→0 and N=N(ε)→∞ as soon as diamSεi→0asε→0,i=1,⋯,N(ε). The result depends solely on the geometry of the bodies and is independent of their mass densities. Collisions are allowed and the initial data are arbitrary with finite energy.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal de Mathematiques Pures et Appliquees
ISSN
0021-7824
e-ISSN
1776-3371
Volume of the periodical
175
Issue of the periodical within the volume
July
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
216-236
UT code for WoS article
001057777000001
EID of the result in the Scopus database
2-s2.0-85159917367