Periodic-type solutions for differential equations with positively homogeneous functionals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574189" target="_blank" >RIV/67985840:_____/23:00574189 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10958-023-06575-y" target="_blank" >https://doi.org/10.1007/s10958-023-06575-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-023-06575-y" target="_blank" >10.1007/s10958-023-06575-y</a>
Alternative languages
Result language
angličtina
Original language name
Periodic-type solutions for differential equations with positively homogeneous functionals
Original language description
We establish efficient conditions that guarantee the existence of a solution of the periodic-type boundary-value problem for the two-dimensional system of nonlinear functional-differential equations in the case where the right-hand side of the system is the sum of positively homogeneous terms of degrees lambda and 1/lambda and other terms with a relatively slow growth at infinity. The general results are reformulated in the special case of differential equations with maxima.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
274
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
126-141
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85164778206