A Liouville-type theorem for the stationary MHD equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574200" target="_blank" >RIV/67985840:_____/23:00574200 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.nonrwa.2023.103920" target="_blank" >https://doi.org/10.1016/j.nonrwa.2023.103920</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nonrwa.2023.103920" target="_blank" >10.1016/j.nonrwa.2023.103920</a>
Alternative languages
Result language
angličtina
Original language name
A Liouville-type theorem for the stationary MHD equations
Original language description
We establish a new Liouville-type theorem for solutions of the stationary MHD equations imposing asymmetric oscillation growth conditions on the tensor-valued functions for the velocity and the magnetic field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GC22-08633J" target="_blank" >GC22-08633J: Qualitative Theory of the MHD and Related Equations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Real World Applications
ISSN
1468-1218
e-ISSN
1878-5719
Volume of the periodical
73
Issue of the periodical within the volume
October
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
103920
UT code for WoS article
001016512400001
EID of the result in the Scopus database
2-s2.0-85159552634