All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Smooth and polyhedral norms via fundamental biorthogonal systems

Result description

Let X be a Banach space with a fundamental biorthogonal system, and let y be the dense subspace spanned by the vectors of the system. We prove that y admits a C-infinity-smooth norm that locally depends on finitely many coordinates (LFC, for short), as well as a polyhedral norm that locally depends on finitely many coordinates. As a consequence, we also prove that y admits locally finite, sigma-uniformly discrete C-infinity-smooth and LFC partitions of unity and a C-1-smooth locally uniformly rotund norm. This theorem substantially generalises several results present in the literature and gives a complete picture concerning smoothness in such dense subspaces. Our result covers, for instance, every weakly Lindelof determined Banach space (hence, all reflexive ones), L-1 (mu) for every measure mu, l(infinity) (Gamma) spaces for every set Gamma, C(K) spaces where K is a Valdivia compactum or a compact Abelian group, duals of Asplund spaces, or preduals of Von Neumann algebras. Additionally, under Martin Maximum MM, all Banach spaces of density omega(1) are covered by our result.

Keywords

Frechet differentiable normsMazur intersection propertyBanach spaces

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Smooth and polyhedral norms via fundamental biorthogonal systems

  • Original language description

    Let X be a Banach space with a fundamental biorthogonal system, and let y be the dense subspace spanned by the vectors of the system. We prove that y admits a C-infinity-smooth norm that locally depends on finitely many coordinates (LFC, for short), as well as a polyhedral norm that locally depends on finitely many coordinates. As a consequence, we also prove that y admits locally finite, sigma-uniformly discrete C-infinity-smooth and LFC partitions of unity and a C-1-smooth locally uniformly rotund norm. This theorem substantially generalises several results present in the literature and gives a complete picture concerning smoothness in such dense subspaces. Our result covers, for instance, every weakly Lindelof determined Banach space (hence, all reflexive ones), L-1 (mu) for every measure mu, l(infinity) (Gamma) spaces for every set Gamma, C(K) spaces where K is a Valdivia compactum or a compact Abelian group, duals of Asplund spaces, or preduals of Von Neumann algebras. Additionally, under Martin Maximum MM, all Banach spaces of density omega(1) are covered by our result.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

    1687-0247

  • Volume of the periodical

    2023

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    31

  • Pages from-to

    13909-13939

  • UT code for WoS article

    000836338400001

  • EID of the result in the Scopus database

    2-s2.0-85168586630

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Pure mathematics

Year of implementation

2023