Cones generated by a generalized fractional maximal function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00575313" target="_blank" >RIV/67985840:_____/23:00575313 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.31489/2023M2/53-62" target="_blank" >https://dx.doi.org/10.31489/2023M2/53-62</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31489/2023M2/53-62" target="_blank" >10.31489/2023M2/53-62</a>
Alternative languages
Result language
angličtina
Original language name
Cones generated by a generalized fractional maximal function
Original language description
The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and equipped with positive homogeneous functionals are constructed. The question of embedding the space of generalized fractional-maximal function in a rearrangement-invariant space is investigated. This question reduces to the embedding of the considered cone in the corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by generalized fractional-maximal function by the cone generated by generalized Riesz potentials are given. Cones from non-increasing rearrangements of generalized potentials were previously considered in the works of M. Goldman, E. Bakhtigareeva, G. Karshygina and others.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Karaganda University. Mathematics Series
ISSN
2518-7929
e-ISSN
—
Volume of the periodical
110
Issue of the periodical within the volume
2
Country of publishing house
KZ - KAZAKSTAN
Number of pages
10
Pages from-to
53-62
UT code for WoS article
001025724900005
EID of the result in the Scopus database
2-s2.0-85169017823