All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cones generated by a generalized fractional maximal function

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00575313" target="_blank" >RIV/67985840:_____/23:00575313 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.31489/2023M2/53-62" target="_blank" >https://dx.doi.org/10.31489/2023M2/53-62</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.31489/2023M2/53-62" target="_blank" >10.31489/2023M2/53-62</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cones generated by a generalized fractional maximal function

  • Original language description

    The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and equipped with positive homogeneous functionals are constructed. The question of embedding the space of generalized fractional-maximal function in a rearrangement-invariant space is investigated. This question reduces to the embedding of the considered cone in the corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by generalized fractional-maximal function by the cone generated by generalized Riesz potentials are given. Cones from non-increasing rearrangements of generalized potentials were previously considered in the works of M. Goldman, E. Bakhtigareeva, G. Karshygina and others.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the Karaganda University. Mathematics Series

  • ISSN

    2518-7929

  • e-ISSN

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    KZ - KAZAKSTAN

  • Number of pages

    10

  • Pages from-to

    53-62

  • UT code for WoS article

    001025724900005

  • EID of the result in the Scopus database

    2-s2.0-85169017823