Mathematical theory of compressible magnetohydrodynamics driven by non-conservative boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00577226" target="_blank" >RIV/67985840:_____/23:00577226 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00021-023-00827-2" target="_blank" >https://doi.org/10.1007/s00021-023-00827-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-023-00827-2" target="_blank" >10.1007/s00021-023-00827-2</a>
Alternative languages
Result language
angličtina
Original language name
Mathematical theory of compressible magnetohydrodynamics driven by non-conservative boundary conditions
Original language description
We propose a new concept of weak solution to the equations of compressible magnetohydrodynamics driven by ihomogeneous boundary data. The system of the underlying field equations is solvable globally in time in the out of equilibrium regime characteristic for turbulence. The weak solutions comply with the weak–strong uniqueness principle, they coincide with the classical solution of the problem as long as the latter exists. The choice of constitutive relations is motivated by applications in stellar magnetoconvection.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
25
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
27
Pages from-to
84
UT code for WoS article
001150781000001
EID of the result in the Scopus database
2-s2.0-85173560257