Fluid-rigid body interaction in a compressible electrically conducting fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579220" target="_blank" >RIV/67985840:_____/23:00579220 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10475748
Result on the web
<a href="https://doi.org/10.1002/mana.202200345" target="_blank" >https://doi.org/10.1002/mana.202200345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202200345" target="_blank" >10.1002/mana.202200345</a>
Alternative languages
Result language
angličtina
Original language name
Fluid-rigid body interaction in a compressible electrically conducting fluid
Original language description
We consider a system of multiple insulating rigid bodies moving inside of an electrically conducting compressible fluid. In this system, we take into account the interaction of the fluid with the bodies as well as with the electromagnetic fields trespassing both the fluid and the solids. The main result of this paper yields the existence of weak solutions to the system. While the mechanical part of the problem can be dealt with via a classical penalization method, the electromagnetic part requires an approximation by means of a hybrid discrete-continuous in time system: The discrete part of the approximation enables us to handle the solution-dependent test functions in our variational formulation of the induction equation, whereas the continuous part makes sure that the nonnegativity of the density and subsequently a meaningful energy inequality is preserved in the approximate system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GC22-08633J" target="_blank" >GC22-08633J: Qualitative Theory of the MHD and Related Equations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
296
Issue of the periodical within the volume
12
Country of publishing house
DE - GERMANY
Number of pages
38
Pages from-to
5513-5550
UT code for WoS article
001002750800001
EID of the result in the Scopus database
2-s2.0-85161521394