All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fluid-rigid body interaction in a compressible electrically conducting fluid

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579220" target="_blank" >RIV/67985840:_____/23:00579220 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/23:10475748

  • Result on the web

    <a href="https://doi.org/10.1002/mana.202200345" target="_blank" >https://doi.org/10.1002/mana.202200345</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.202200345" target="_blank" >10.1002/mana.202200345</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fluid-rigid body interaction in a compressible electrically conducting fluid

  • Original language description

    We consider a system of multiple insulating rigid bodies moving inside of an electrically conducting compressible fluid. In this system, we take into account the interaction of the fluid with the bodies as well as with the electromagnetic fields trespassing both the fluid and the solids. The main result of this paper yields the existence of weak solutions to the system. While the mechanical part of the problem can be dealt with via a classical penalization method, the electromagnetic part requires an approximation by means of a hybrid discrete-continuous in time system: The discrete part of the approximation enables us to handle the solution-dependent test functions in our variational formulation of the induction equation, whereas the continuous part makes sure that the nonnegativity of the density and subsequently a meaningful energy inequality is preserved in the approximate system.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GC22-08633J" target="_blank" >GC22-08633J: Qualitative Theory of the MHD and Related Equations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Volume of the periodical

    296

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    38

  • Pages from-to

    5513-5550

  • UT code for WoS article

    001002750800001

  • EID of the result in the Scopus database

    2-s2.0-85161521394