(Verifiable) delay functions from Lucas sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579718" target="_blank" >RIV/67985840:_____/23:00579718 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-48624-1_13" target="_blank" >https://doi.org/10.1007/978-3-031-48624-1_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-48624-1_13" target="_blank" >10.1007/978-3-031-48624-1_13</a>
Alternative languages
Result language
angličtina
Original language name
(Verifiable) delay functions from Lucas sequences
Original language description
Lucas sequences are constant-recursive integer sequences with a long history of applications in cryptography, both in the design of cryptographic schemes and cryptanalysis. In this work, we study the sequential hardness of computing Lucas sequences over an RSA modulus. First, we show that modular Lucas sequences are at least as sequentially hard as the classical delay function given by iterated modular squaring proposed by Rivest, Shamir, and Wagner (MIT Tech. Rep. 1996) in the context of time-lock puzzles. Moreover, there is no obvious reduction in the other direction, which suggests that the assumption of sequential hardness of modular Lucas sequences is strictly weaker than that of iterated modular squaring. In other words, the sequential hardness of modular Lucas sequences might hold even in the case of an algorithmic improvement violating the sequential hardness of iterated modular squaring. Second, we demonstrate the feasibility of constructing practically-efficient verifiable delay functions based on the sequential hardness of modular Lucas sequences. Our construction builds on the work of Pietrzak (ITCS 2019) by leveraging the intrinsic connection between the problem of computing modular Lucas sequences and exponentiation in an appropriate extension field.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Theory of Cryptography: 21st International Conference, TCC 2023, Taipei, Taiwan, November 29–December 2, 2023, Proceedings, Part IV
ISBN
978-3-031-48623-4
ISSN
0302-9743
e-ISSN
—
Number of pages
27
Pages from-to
336-362
Publisher name
Springer
Place of publication
Cham
Event location
Taipei
Event date
Nov 29, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001160733700013