Concentration of measure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00581855" target="_blank" >RIV/67985840:_____/23:00581855 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Concentration of measure
Original language description
Isoperimetric inequalities imply that, probabilistically, Lipschitz functions on high dimensional geometric structures are approximately constant. This phenomenon is known as `concentration of measure'. In this brief introduction, I will describe these geometric situations and discuss examples related to dynamical systems, in particular, groups of measure-preserving automorphisms of Lebesgue space, and Anosov diffeomorphisms like Arnold's cat map.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algebra, Topology and Analysis: C* and $A_infty$ Algebras
ISBN
978-9941-36-079-4
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
8-18
Publisher name
Ivane Javakhishvili Tbilisi State University Press
Place of publication
Tbilisi
Event location
Batumi
Event date
Aug 30, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—