Interpolation with restrictions -- role of the boundary conditions and individual restrictions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00582254" target="_blank" >RIV/67985840:_____/23:00582254 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/23:00366337
Result on the web
<a href="http://dx.doi.org/10.21136/panm.2022.26" target="_blank" >http://dx.doi.org/10.21136/panm.2022.26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/panm.2022.26" target="_blank" >10.21136/panm.2022.26</a>
Alternative languages
Result language
angličtina
Original language name
Interpolation with restrictions -- role of the boundary conditions and individual restrictions
Original language description
The contribution deals with the remeshing procedure between two computational finite element meshes. The remeshing represented by the interpolation of an approximate solution onto a new mesh is needed in many applications like e.g. in aeroacoustics, here we are particularly interested in the numerical flow simulation of a gradual channel collapse connected with a~severe deterioration of the computational mesh quality. Since the classical Lagrangian projection from one mesh to another is a dissipative method not respecting conservation laws, a conservative interpolation method introducing constraints is described. The constraints have form of Lagrange multipliers enforcing conservation of desired flow quantities, like e.g. total fluid mass, flow kinetic energy or flow potential energy. Then the interpolation problem turns into an error minimization problem, such that the resulting quantities of proposed interpolation satisfy these physical properties while staying as close as possible to the results of Lagrangian interpolation in the L2 norm. The proposed interpolation scheme does not impose any restrictions on mesh generation process and it has a relatively low computational cost. The implementation details are discussed and test cases are shown.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and Algorithms of Numerical Mathematics 21
ISBN
978-80-85823-73-8
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
281-292
Publisher name
Institute of Mathematics CAS
Place of publication
Prague
Event location
Jablonec nad Nisou
Event date
Jun 19, 2022
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—