A systematic approach for invariants of C∗-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00582791" target="_blank" >RIV/67985840:_____/23:00582791 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4064/sm230516-22-6" target="_blank" >https://doi.org/10.4064/sm230516-22-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm230516-22-6" target="_blank" >10.4064/sm230516-22-6</a>
Alternative languages
Result language
angličtina
Original language name
A systematic approach for invariants of C∗-algebras
Original language description
We define a categorical framework in which we build a systematic construction that provides generic invariants for C∗-algebras. The benefit is significant as we show that any invariant arising this way automatically enjoys nice properties such as continuity, a metric on the set of morphisms and a theory of ideals and quotients which naturally encapsulates compatibility diagrams. Consequently, any of these invariants appear as good candidates for the classification of non-simple C∗-algebras. Further, most of the existing invariants could be rewritten via this method. As an application, we define a Hausdorffized version of the unitary Cuntz semigroup and explore its potential towards classification results. We indicate several open lines of research.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia mathematica
ISSN
0039-3223
e-ISSN
1730-6337
Volume of the periodical
273
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
37
Pages from-to
63-99
UT code for WoS article
001070915700001
EID of the result in the Scopus database
2-s2.0-85172434374