All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A systematic approach for invariants of C∗-algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00582791" target="_blank" >RIV/67985840:_____/23:00582791 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4064/sm230516-22-6" target="_blank" >https://doi.org/10.4064/sm230516-22-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm230516-22-6" target="_blank" >10.4064/sm230516-22-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A systematic approach for invariants of C∗-algebras

  • Original language description

    We define a categorical framework in which we build a systematic construction that provides generic invariants for C∗-algebras. The benefit is significant as we show that any invariant arising this way automatically enjoys nice properties such as continuity, a metric on the set of morphisms and a theory of ideals and quotients which naturally encapsulates compatibility diagrams. Consequently, any of these invariants appear as good candidates for the classification of non-simple C∗-algebras. Further, most of the existing invariants could be rewritten via this method. As an application, we define a Hausdorffized version of the unitary Cuntz semigroup and explore its potential towards classification results. We indicate several open lines of research.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia mathematica

  • ISSN

    0039-3223

  • e-ISSN

    1730-6337

  • Volume of the periodical

    273

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    37

  • Pages from-to

    63-99

  • UT code for WoS article

    001070915700001

  • EID of the result in the Scopus database

    2-s2.0-85172434374