Natural differentiable structures on statistical models and the Fisher metric
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00580443" target="_blank" >RIV/67985840:_____/24:00580443 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s41884-022-00090-w" target="_blank" >https://doi.org/10.1007/s41884-022-00090-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s41884-022-00090-w" target="_blank" >10.1007/s41884-022-00090-w</a>
Alternative languages
Result language
angličtina
Original language name
Natural differentiable structures on statistical models and the Fisher metric
Original language description
In this paper I discuss the relation between the concept of the Fisher metric and the concept of differentiability of a family of probability measures. I compare the concepts of smooth statistical manifolds, differentiable families of measures, k-integrable parameterized measure models, diffeological statistical models, differentiable measures, which arise in Information Geometry, mathematical statistics and measure theory, and discuss some related problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Geometry
ISSN
2511-2481
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
1
Country of publishing house
SG - SINGAPORE
Number of pages
21
Pages from-to
271-291
UT code for WoS article
001390099700027
EID of the result in the Scopus database
2-s2.0-85143891679