One Navier’s problem for the Brinkman system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00582711" target="_blank" >RIV/67985840:_____/24:00582711 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11565-023-00458-5" target="_blank" >https://doi.org/10.1007/s11565-023-00458-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11565-023-00458-5" target="_blank" >10.1007/s11565-023-00458-5</a>
Alternative languages
Result language
angličtina
Original language name
One Navier’s problem for the Brinkman system
Original language description
In this paper we study the Brinkman system and the Darcy-Forchheimer-Brinkman system with the boundary condition of the Navier’s type uT= gT, ρ= h on ∂Ω for a bounded planar domain Ω with connected boundary. Solutions are looked for in the Sobolev spaces Ws+1,q(Ω , R2) × Ws,q(Ω) and in the Besov spaces Bs+1p,r(Ω,R2)×Bsq,r(Ω). Classical solutions are from the spaces Ck+1,γ(Ω ¯ , R2) × Ck,γ(Ω ¯). For the Brinkman system we show the unique solvability of the problem. Then we study the Navier problem for the Darcy-Forchheimer-Brinkman system and small boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annali dell´Universitá di Ferrara
ISSN
0430-3202
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
1
Country of publishing house
FR - FRANCE
Number of pages
18
Pages from-to
89-106
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85148873801