All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

One Navier’s problem for the Brinkman system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00582711" target="_blank" >RIV/67985840:_____/24:00582711 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s11565-023-00458-5" target="_blank" >https://doi.org/10.1007/s11565-023-00458-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11565-023-00458-5" target="_blank" >10.1007/s11565-023-00458-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    One Navier’s problem for the Brinkman system

  • Original language description

    In this paper we study the Brinkman system and the Darcy-Forchheimer-Brinkman system with the boundary condition of the Navier’s type uT= gT, ρ= h on ∂Ω for a bounded planar domain Ω with connected boundary. Solutions are looked for in the Sobolev spaces Ws+1,q(Ω , R2) × Ws,q(Ω) and in the Besov spaces Bs+1p,r(Ω,R2)×Bsq,r(Ω). Classical solutions are from the spaces Ck+1,γ(Ω ¯ , R2) × Ck,γ(Ω ¯). For the Brinkman system we show the unique solvability of the problem. Then we study the Navier problem for the Darcy-Forchheimer-Brinkman system and small boundary conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annali dell´Universitá di Ferrara

  • ISSN

    0430-3202

  • e-ISSN

  • Volume of the periodical

    70

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    18

  • Pages from-to

    89-106

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85148873801