The existence of a weak solution for a compressible multicomponent fluid structure interaction problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00584372" target="_blank" >RIV/67985840:_____/24:00584372 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.matpur.2024.02.007" target="_blank" >https://doi.org/10.1016/j.matpur.2024.02.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matpur.2024.02.007" target="_blank" >10.1016/j.matpur.2024.02.007</a>
Alternative languages
Result language
angličtina
Original language name
The existence of a weak solution for a compressible multicomponent fluid structure interaction problem
Original language description
We analyze a system of PDEs governing the interaction between two compressible mutually noninteracting fluids and a shell of Koiter type encompassing a time dependent 3D domain filled by the fluids. The dynamics of the fluids is modeled by a system resembling compressible Navier-Stokes equations with a physically realistic pressure depending on densities of both the fluids. The shell possesses a non-linear, non-convex Koiter energy. Considering that the densities are comparable initially we prove the existence of a weak solution until the degeneracy of the energy or the self-intersection of the structure occurs for two cases. In the first case the adiabatic exponents are assumed to satisfy max{γ,β}>2, min{γ,β}>0, and the structure involved is assumed to be non-dissipative. For the second case we assume the critical case max{γ,β}≥2 and min{γ,β}>0 and the dissipativity of the structure. The result is achieved in several steps involving, extension of the physical domain, penalization of the interface condition, artificial regularization of the shell energy and the pressure, the almost compactness argument, added structural dissipation and suitable limit passages depending on uniform estimates.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal de Mathematiques Pures et Appliquees
ISSN
0021-7824
e-ISSN
1776-3371
Volume of the periodical
184
Issue of the periodical within the volume
April
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
72
Pages from-to
118-189
UT code for WoS article
001206877700001
EID of the result in the Scopus database
2-s2.0-85187641241