All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

M-harmonic Szegö Kernel on the ball

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585522" target="_blank" >RIV/67985840:_____/24:00585522 - isvavai.cz</a>

  • Alternative codes found

    RIV/47813059:19610/24:A0000154

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-981-99-9506-6_2" target="_blank" >http://dx.doi.org/10.1007/978-981-99-9506-6_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-99-9506-6_2" target="_blank" >10.1007/978-981-99-9506-6_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    M-harmonic Szegö Kernel on the ball

  • Original language description

    We give a description of the boundary singularity of the Szegö kernel of M-harmonic functions, i.e. functions annihilated by the invariant Laplacian, on the unit ball of the complex n-space, in terms of the Gauss hypergeometric functions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-27941S" target="_blank" >GA21-27941S: Function theory and related operators on complex domains</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The Bergman Kernel and Related Topics

  • ISBN

    978-981-99-9505-9

  • ISSN

    2194-1009

  • e-ISSN

    2194-1017

  • Number of pages

    16

  • Pages from-to

    105-120

  • Publisher name

    Springer

  • Place of publication

    Singapore

  • Event location

    Tokyo

  • Event date

    Jul 23, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001258800500002