All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Verification of initial-and-final-state opacity for unambiguous weighted automata

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585936" target="_blank" >RIV/67985840:_____/24:00585936 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.isatra.2024.03.019" target="_blank" >https://doi.org/10.1016/j.isatra.2024.03.019</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.isatra.2024.03.019" target="_blank" >10.1016/j.isatra.2024.03.019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Verification of initial-and-final-state opacity for unambiguous weighted automata

  • Original language description

    Initial-and-final-state opacity (IFO) is a type of opacity that characterizes a system's ability to prevent the disclosure of information about whether its evolution starts at an initial state and ends at a final state. In this paper, we extend the notion of IFO from the logical automata to the framework of unambiguous weighted automata (UWAs) that do not contain any cycle composed solely of unobservable events. For the verification of IFO, we first construct a labeled observer and a trellis-based initial state estimator for a given UWA. Even though the labeled observer has much smaller state space compared to the trellis-based initial state estimator, it cannot be used when the set of secret state pairs or the set of non-secret state pairs is not in the Cartesian product form. Based on the labeled observer, we present a more efficient method to verify IFO in the case when the set of non-secret state pairs is expressed as a Cartesian product, regardless of whether the set of secret state pairs is in the Cartesian product form. Furthermore, we use the labeled observer to verify initial-state opacity for a UWA.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Isa Transactions

  • ISSN

    0019-0578

  • e-ISSN

    1879-2022

  • Volume of the periodical

    148

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    237-246

  • UT code for WoS article

    001241318800001

  • EID of the result in the Scopus database

    2-s2.0-85189948212