All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Coupled linear Schrödinger equations: Control and stabilization results

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585946" target="_blank" >RIV/67985840:_____/24:00585946 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00033-024-02242-7" target="_blank" >https://doi.org/10.1007/s00033-024-02242-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00033-024-02242-7" target="_blank" >10.1007/s00033-024-02242-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Coupled linear Schrödinger equations: Control and stabilization results

  • Original language description

    This article presents some controllability and stabilization results for a system of two coupled linear Schrödinger equations in the one-dimensional case where the state components are interacting through the Kirchhoff boundary conditions. Considering the system in a bounded domain, the null boundary controllability result is shown. The result is achieved thanks to a new Carleman estimate, which ensures a boundary observation. Additionally, this boundary observation together with some trace estimates, helps us to use the Gramian approach, with a suitable choice of feedback law, to prove that the system under consideration decays exponentially to zero at least as fast as the function e-2ωt for some ω>0.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GC22-08633J" target="_blank" >GC22-08633J: Qualitative Theory of the MHD and Related Equations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Zeitschrift für angewandte Mathematik und Physik

  • ISSN

    0044-2275

  • e-ISSN

    1420-9039

  • Volume of the periodical

    75

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    31

  • Pages from-to

    97

  • UT code for WoS article

    001210405100001

  • EID of the result in the Scopus database

    2-s2.0-85191659654