On growth and instability for semilinear evolution equations: an abstract approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00587705" target="_blank" >RIV/67985840:_____/24:00587705 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00208-023-02733-4" target="_blank" >https://doi.org/10.1007/s00208-023-02733-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-023-02733-4" target="_blank" >10.1007/s00208-023-02733-4</a>
Alternative languages
Result language
angličtina
Original language name
On growth and instability for semilinear evolution equations: an abstract approach
Original language description
We propose a new approach to the study of (nonlinear) growth and instability for semilinear abstract evolution equations with compact nonlinearities. We show, in particular, that compact nonlinear perturbations of linear evolution equations can be treated as linear ones as far as the growth of their solutions is concerned. We obtain exponential lower bounds of solutions for initial values from a dense set in resolvent or spectral terms. The abstract results are applied, in particular, to the study of energy growth for semilinear backward damped wave equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
1432-1807
Volume of the periodical
389
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
49
Pages from-to
3885-3933
UT code for WoS article
001119023000001
EID of the result in the Scopus database
2-s2.0-85174904051