All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Total Sulfate vs. Sulfuric Acid Monomer Concenterations in Nucleation Studies.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F15%3A00473037" target="_blank" >RIV/67985858:_____/15:00473037 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5194/acp-15-3429-2015" target="_blank" >http://dx.doi.org/10.5194/acp-15-3429-2015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/acp-15-3429-2015" target="_blank" >10.5194/acp-15-3429-2015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Total Sulfate vs. Sulfuric Acid Monomer Concenterations in Nucleation Studies.

  • Original language description

    Sulfuric acid is known to be a key component for atmospheric nucleation. Precise determination of sulfuric-acid concentration is a crucial factor for prediction of nucleation rates and subsequent growth. In our study, we have noticed a substantial discrepancy between sulfuric-acid monomer concentrations and total-sulfate concentrations measured from the same source of sulfuric-acid vapor. The discrepancy of about 1-2 orders of magnitude was found with similar particle-formation rates. To investigate this discrepancy, and its effect on nucleation, a method of thermally controlled saturator filled with pure sulfuric acid (97% wt.) for production of sulfuric-acid vapor is applied and rigorously tested. The saturator provided an independent vapor-production method, compared to our previous method of the furnace (Brus et al., 2010, 2011), to find out if the discrepancy is caused by the production method itself. The saturator was used in a H2SO4-H2O nucleation experiment, using a laminar flow tube to check reproducibility of the nucleation results with the saturator method, compared to the furnace. Two independent methods of mass spectrometry and online ion chromatography were used for detecting sulfuric-acid or sulfate concentrations. Measured sulfuric-acid or total-sulfate concentrations are compared to theoretical predictions calculated using vapor pressure and a mixing law. The calculated prediction of sulfuric-acid concentrations agrees very well with the measured values when total sulfate is considered. Sulfuric-acid monomer concentration was found to be about 2 orders of magnitude lower than theoretical predictions, but with a temperature dependency similar to the predictions and the results obtained with the ion-chromatograph method. Formation rates are reproducible when compared to our previous results with both sulfuric-acid or total-sulfate detection and sulfuric-acid production methods separately, removing any doubts that the vapor-production method would c...

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Atmospheric Chemistry and Physics

  • ISSN

    1680-7316

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    15

  • Pages from-to

    3429-3443

  • UT code for WoS article

    000352157600028

  • EID of the result in the Scopus database

    2-s2.0-84961288372