All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Liquid Phase Behaviour in Systems of 1-Butyl-3-Alkylimidazolium bis(trifluoromethyl)SulfonylimideIonic Liquids with Water: Influence of the Structure of the C5 Alkyl Substituent.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F17%3A00484230" target="_blank" >RIV/67985858:_____/17:00484230 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10953-017-0659-y" target="_blank" >http://dx.doi.org/10.1007/s10953-017-0659-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10953-017-0659-y" target="_blank" >10.1007/s10953-017-0659-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Liquid Phase Behaviour in Systems of 1-Butyl-3-Alkylimidazolium bis(trifluoromethyl)SulfonylimideIonic Liquids with Water: Influence of the Structure of the C5 Alkyl Substituent.

  • Original language description

    In the present paper a study of the liquid phase behavior in aqueous systems of imidazolium-based ionic liquids (ILs) with the bis{(trifluoromethyl)sulfonyl}imide anion is addressed. To highlight the influence of the C5 alkyl side group structure on their properties, a series of ILs with linear, branched, and cyclic substituents was studied. As was already shown in our previous work, very subtle changes in the cation structure at the molecular scale can have a significant and unexpected impact on the bulk properties. Therefore, in this work, the mutual solubilities of 1-butyl-3-alkylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquids and water were studied, both experimentally and by modeling, at atmospheric pressure as a function of temperature from 293.15 to 328.15 K. The solubilities of the ionic liquids in water are very low, typically around 10−5 mole fraction units and were measured by a direct analytical method, making use of UV–Vis spectrophotometry. The solubilities of water in the ionic liquids were found to be around 0.20 mole fraction units and were measured using the cloud-point method. In addition to the experimental data, the liquid–liquid equilibria in the systems were modeled using the COSMO-RS methodology. Phase diagrams and the critical solution points were also estimated by applying the universal scaling laws based on the 3D Ising model, taking into account the non-linearity of the diameter and crossover to mean-field behavior.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/LD14090" target="_blank" >LD14090: From task-specific solvents to energy storage. Thermodynamics of ionic liquids at the service of their applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Solution Chemistry

  • ISSN

    0095-9782

  • e-ISSN

  • Volume of the periodical

    46

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    1456-1474

  • UT code for WoS article

    000406363100007

  • EID of the result in the Scopus database

    2-s2.0-85025687065