Novel perspectives of laser ablation in liquids: the formation of a high-pressure orthorhombic FeS phase and absorption of FeS-derived colloids on a porous surface for solar-light photocatalytic wastewater cleaning.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F20%3A00531964" target="_blank" >RIV/67985858:_____/20:00531964 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0312108" target="_blank" >http://hdl.handle.net/11104/0312108</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/D0DT01999B" target="_blank" >10.1039/D0DT01999B</a>
Alternative languages
Result language
angličtina
Original language name
Novel perspectives of laser ablation in liquids: the formation of a high-pressure orthorhombic FeS phase and absorption of FeS-derived colloids on a porous surface for solar-light photocatalytic wastewater cleaning.
Original language description
A pulsed Nd:YAG laser ablation of FeS in water and ethanol produces FeS-derived colloidal nanoparticles which absorb onto immersed porous ceramic substrates and create solar-light photocatalytic surfaces. The stability, size distribution and zeta potential of the nanoparticles were assessed by Dynamic light scattering. Raman, UV-Vis and XP spectroscopy and electron microscopy reveal that the sol nanoparticles have their outmost layer composed of ferrous and ferric sulphates and those produced in water are made of high-pressure orthorhombic FeS, cubic magnetite Fe3O4 and tetragonal maghemite γ-Fe2O3, while those formed in ethanol contain hexagonal FeS and cubic magnetite Fe3O4. Both colloids absorb solar light and their adsorption to porous ceramic surfaces creates functionalized ceramic surfaces which induce Methylene blue degradation by the day light. The laser induced process thus offers easy and efficient way for functionalization of porous surfaces by photocatalytic nanoparticles which avoid aggregation in liquid phase. The formation of orthorhombic high-pressure FeS phase stable under ambient condition is the first example of high-pressure structures produced by laser ablation in liquid without assistance of electric field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Dalton Transactions
ISSN
1477-9226
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
38
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
13262-13275
UT code for WoS article
000575307000007
EID of the result in the Scopus database
2-s2.0-85092245700