Tailoring the Thermal and Mechanical Properties of PolyActiveTM Poly(Ether-Ester) Multiblock Copolymers Via Blending with CO2-Phylic Ionic Liquid.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F20%3A00541358" target="_blank" >RIV/67985858:_____/20:00541358 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22340/20:43921510
Result on the web
<a href="https://www.mdpi.com/2073-4360/12/4/890" target="_blank" >https://www.mdpi.com/2073-4360/12/4/890</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym12040890" target="_blank" >10.3390/polym12040890</a>
Alternative languages
Result language
angličtina
Original language name
Tailoring the Thermal and Mechanical Properties of PolyActiveTM Poly(Ether-Ester) Multiblock Copolymers Via Blending with CO2-Phylic Ionic Liquid.
Original language description
This paper reports on the preparation and testing of blend membranes based on polyvinyl alcohol (PVA) and 1-ethyl-3-methylimidazolium dicyanamide ([EMIM] [DCA]) ionic liquid (IL) for effective CO2/H-2 gas separation. Stable membranes with 9, 14, 24, 42 and 53 wt.% of IL were prepared via the solution casting procedure. Structural analysis (XRD, Raman, TGA and DSC) revealed that the increase of the incorporated IL content in PVA affected e.g. crystalline orientation in the diffraction plane 1 0 1 in favour of plane 2 0 0. The presence of the IL shifted the Tg (65 degrees C) and Tm (165 degrees C) of neat PVA to lower temperatures, towards the values of pure IL. The gas transport in neat PVA and PVA-IL blends with low IL content was found to be diffusivity-controlled, and the IL addition leads to an increase of both gas permeability and H-2/CO2 selectivity. Instead, membranes with an IL content above 20 wt.% were more permeable for CO2 due to the prevailing solubility-controlled mechanism. Compared to neat PVA, which has barrier properties, the sample PVA-IL with 53 wt.% of IL exhibited an exceptional increase in gas permeability for both gases, H-2 circa 150 times to 8.65 Barrer and CO2 permeability circa 2400 times to 66.9 Barrer, with the corresponding ideal CO2/H-2 selectivity of 7.73 that slightly exceeds the reverse CO2/H-2 Robeson 2008 upper bound.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20401 - Chemical engineering (plants, products)
Result continuities
Project
<a href="/en/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategic Partnership for Environmental Technologies and Energy Production</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymers
ISSN
2073-4360
e-ISSN
2073-4360
Volume of the periodical
12
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
890
UT code for WoS article
000535587700160
EID of the result in the Scopus database
2-s2.0-85084575830