Hygroscopicity of secondary marine organic aerosols: Mixtures of alkylammonium salts and inorganic components.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F21%3A00542862" target="_blank" >RIV/67985858:_____/21:00542862 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0321314" target="_blank" >http://hdl.handle.net/11104/0321314</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2021.148131" target="_blank" >10.1016/j.scitotenv.2021.148131</a>
Alternative languages
Result language
angličtina
Original language name
Hygroscopicity of secondary marine organic aerosols: Mixtures of alkylammonium salts and inorganic components.
Original language description
Field studies have identified alkylammonium salts as important components of secondary marine organic aerosols. In this work, we study the hygroscopic behavior of laboratory-generated alkylammonium aerosol particles, including monomethylammonium chloride (MMACl), dimethylammonium chloride (DMACl), trimethylammonium chloride (TMACl), diethylammonium chloride (DEACl), and their mixtures with inorganic salts containing ammonium sulfate (NH4)2SO4, sodium chloride NaCl, calcium nitrate Ca(NO3)2 and sodium sulfate Na2SO4 at different dry mass ratios with a hygroscopicity tandem differential mobility analyzer (HTDMA). The hygroscopic growth of pure alkylammonium salt particles (except for DEACl) reveals gradual water uptake over the whole studied range of relative humidities (RHs). In general, the impact of the presence of alkylammonium chloride on the phase behavior and hygroscopic growth of mixtures depends on the chemical composition of particles and volume fraction of the alkylammonium chloride in the mixtures. For alkylammonium/(NH4)2SO4 mixed particles (except for TMACl/(NH4)2SO4), the hygroscopic growth shows a smooth growth tendency when the organic content is high, while the deliquescence transition is observed for alkylammonium salt/NaCl mixtures at all mass ratios. Regarding the different mixtures of alkylammonium/Ca(NO3)2 particles, continuous water uptake without phase transition is observed over the studied RH range, indicating that alkylammonium salts impose no effect on the liquid-like state of calcium nitrate. The alkylammonium/Na2SO4 mixtures show obvious particle shrinkage prior to the deliquescence point. A similar behavior is also observed for alkylammonium salt/NaCl mixtures. The observed diameter reduction can be attributed to the transformation of porous or irregularly shaped solid particles into more compact near-spherical particles. In the following, measured growth factors (GFs) are compared with values predicted with the Zdanovskii–Stokes–Robinson (ZSR) mixing rule and ideal solution model. The ZSR predictions for different alkylammonium/inorganic mixtures are similar to the measured GFs as long as the mixed particles are in a liquid-like state.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10509 - Meteorology and atmospheric sciences
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Science of the Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Volume of the periodical
790
Issue of the periodical within the volume
OCT 10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
40
Pages from-to
148131
UT code for WoS article
000685278900003
EID of the result in the Scopus database
2-s2.0-85107273921