All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hygroscopicity of secondary marine organic aerosols: Mixtures of alkylammonium salts and inorganic components.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F21%3A00542862" target="_blank" >RIV/67985858:_____/21:00542862 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0321314" target="_blank" >http://hdl.handle.net/11104/0321314</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2021.148131" target="_blank" >10.1016/j.scitotenv.2021.148131</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hygroscopicity of secondary marine organic aerosols: Mixtures of alkylammonium salts and inorganic components.

  • Original language description

    Field studies have identified alkylammonium salts as important components of secondary marine organic aerosols. In this work, we study the hygroscopic behavior of laboratory-generated alkylammonium aerosol particles, including monomethylammonium chloride (MMACl), dimethylammonium chloride (DMACl), trimethylammonium chloride (TMACl), diethylammonium chloride (DEACl), and their mixtures with inorganic salts containing ammonium sulfate (NH4)2SO4, sodium chloride NaCl, calcium nitrate Ca(NO3)2 and sodium sulfate Na2SO4 at different dry mass ratios with a hygroscopicity tandem differential mobility analyzer (HTDMA). The hygroscopic growth of pure alkylammonium salt particles (except for DEACl) reveals gradual water uptake over the whole studied range of relative humidities (RHs). In general, the impact of the presence of alkylammonium chloride on the phase behavior and hygroscopic growth of mixtures depends on the chemical composition of particles and volume fraction of the alkylammonium chloride in the mixtures. For alkylammonium/(NH4)2SO4 mixed particles (except for TMACl/(NH4)2SO4), the hygroscopic growth shows a smooth growth tendency when the organic content is high, while the deliquescence transition is observed for alkylammonium salt/NaCl mixtures at all mass ratios. Regarding the different mixtures of alkylammonium/Ca(NO3)2 particles, continuous water uptake without phase transition is observed over the studied RH range, indicating that alkylammonium salts impose no effect on the liquid-like state of calcium nitrate. The alkylammonium/Na2SO4 mixtures show obvious particle shrinkage prior to the deliquescence point. A similar behavior is also observed for alkylammonium salt/NaCl mixtures. The observed diameter reduction can be attributed to the transformation of porous or irregularly shaped solid particles into more compact near-spherical particles. In the following, measured growth factors (GFs) are compared with values predicted with the Zdanovskii–Stokes–Robinson (ZSR) mixing rule and ideal solution model. The ZSR predictions for different alkylammonium/inorganic mixtures are similar to the measured GFs as long as the mixed particles are in a liquid-like state.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Volume of the periodical

    790

  • Issue of the periodical within the volume

    OCT 10

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    40

  • Pages from-to

    148131

  • UT code for WoS article

    000685278900003

  • EID of the result in the Scopus database

    2-s2.0-85107273921