All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Permeability enhancement of chemically modified and grafted polyamide layer of thin-film composite membranes for biogas upgrading.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F22%3A00545892" target="_blank" >RIV/67985858:_____/22:00545892 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27710/21:10248523 RIV/60461373:22310/22:43925166 RIV/60461373:22340/22:43925166 RIV/44555601:13440/22:43896865

  • Result on the web

    <a href="http://hdl.handle.net/11104/0324867" target="_blank" >http://hdl.handle.net/11104/0324867</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.memsci.2021.119890" target="_blank" >10.1016/j.memsci.2021.119890</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Permeability enhancement of chemically modified and grafted polyamide layer of thin-film composite membranes for biogas upgrading.

  • Original language description

    Membrane separations enable biogas upgrading, but their energy efficiency must still be improved for industrial upscaling. Nevertheless, UV treatment affects the permeation properties of the polyamide functional layer of reverse osmosis (RO) and nanofiltration thin film composite (TFC) membranes. In this work, after membrane activation via Piranha solution, cysteamine grafting and UV irradiation, we determined the gas permeability of dry and swelled samples. The samples exhibited higher permeability to gases (CO2, CH4 and N2) than pristine membranes, reaching a 100% increase in RO membranes grafted with cysteamine after UV activation. Permeability increased more than twofold compared to RO-TFC membranes activated by diode discharge plasma, as recently reported. Separation favored smaller gas molecules, and the increase in permeability resulting from all modifications did not adversely affect selectivity. CO2/CH4 selectivity remained almost constant over the range of transmembrane pressure difference to 400 kPa. The grafting with cysteamine to the activated functional layer at the RO membrane positively affected permeability despite the detrimental effect of activation with a Piranha solution. The same activation or cysteamine grafting method at the nanofiltration membrane led only to a very short operation time, although the pristine nanofiltration membrane was stable. The pristine nanofiltration membranes were less permeable to all gasses than all RO membranes. Mixed gas separation of model binary biogas mixtures enhanced CH4 and CO2 permeability only in membranes activated with UV radiation. Decrease of mixed gas selectivity with the growing feed pressure showed that the gas mixture is more effectively separated at lower trans-membrane pressures. Therefore, our model for describing gas mixture separations in cylindrical permeation cells can be utilized to better evaluate the mass transfer coefficient and assess the strength of the coupling effect.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/GA19-02482S" target="_blank" >GA19-02482S: Ion beam writing synthesis of novel microstructures in advanced polymers and nanocomposites</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Membrane Science

  • ISSN

    0376-7388

  • e-ISSN

    1873-3123

  • Volume of the periodical

    641

  • Issue of the periodical within the volume

    1 JAN

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    119890

  • UT code for WoS article

    000705871700006

  • EID of the result in the Scopus database

    2-s2.0-85115927971