All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Molecular dynamics of preferential adsorption in mixed alkali–halide electrolytes at graphene electrodes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F22%3A00560272" target="_blank" >RIV/67985858:_____/22:00560272 - isvavai.cz</a>

  • Alternative codes found

    RIV/44555601:13440/22:43897357

  • Result on the web

    <a href="https://hdl.handle.net/11104/0333260" target="_blank" >https://hdl.handle.net/11104/0333260</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0097425" target="_blank" >10.1063/5.0097425</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Molecular dynamics of preferential adsorption in mixed alkali–halide electrolytes at graphene electrodes

  • Original language description

    Understanding the microscopic behavior of aqueous electrolyte solutions in contact with graphene and related carbon surfaces is important in electrochemical technologies, such as capacitive deionization or supercapacitors. In this work, we focus on preferential adsorption of ions in mixed alkali–halide electrolytes containing different fractions of Li+/Na+ or Li+/K+ and/or Na+/K+ cations with Cl− anions dissolved in water. We performed molecular dynamics simulations of the solutions in contact with both neutral and positively and negatively charged graphene surfaces under ambient conditions, using the effectively polarizable force field. The simulations show that large ions are often intuitively attracted to oppositely charged electrodes. In contrast, the adsorption behavior of small ions tends to be counterintuitive. In mixedcation solutions, one of the cations always supports the adsorption of the other cation, while the other cation weakens the adsorption of the first cation. In mixed-cation solutions containing large and small cations simultaneously, adsorption of the larger cations varies dramatically with the electrode charge in an intuitive way, while adsorption of the smaller cations changes oppositely, i.e., in a counterintuitive way. For (Li/K)Cl mixed-cation solutions, these effects allow the control of Li+ adsorption by varying the electrode charge, whereas, for LiCl single-salt solutions, Li+ adsorption is nearly independent of the electrode charge. We rationalize this cation–cation lever effect as a result of a competition between three driving forces: (i) direct graphene–ion interactions, (ii) the strong tendency of the solutions to saturate the network of non-covalent intermolecular bonds, and (iii) the tendency to suppress local charge accumulation in any region larger than typical interparticle distances. We analyze the driving forces in detail using a general method for intermolecular bonding based on spatial distributionnfunctions and different contributions to the total charge density profiles. The analysis helps to predict whether an ion is more affected by each of the three driving forces, depending on the strength of the ion solvation shells and the compatibility between the contributions of the charge density profiles due to the ion and water molecules. This approach is general and can also be applied to other solutions under different thermodynamic conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

    1089-7690

  • Volume of the periodical

    157

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    0097425

  • UT code for WoS article

    000892536400008

  • EID of the result in the Scopus database

    2-s2.0-85137085042