All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Atomistic simulation framework for molten salt vapor–liquid equilibrium prediction and its application to NaCl

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F22%3A00562496" target="_blank" >RIV/67985858:_____/22:00562496 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0334823" target="_blank" >https://hdl.handle.net/11104/0334823</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0089455" target="_blank" >10.1063/5.0089455</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Atomistic simulation framework for molten salt vapor–liquid equilibrium prediction and its application to NaCl

  • Original language description

    Knowledge of the vapor–liquid equilibrium (VLE) properties of molten salts is important in the design of thermal energy storage systems for solar power and nuclear energy production applications. The high temperatures involved make their experimental determination problematic, and the development of both macroscopic thermodynamic correlations and predictive molecular-based methodologies are complicated by the requirement to appropriately incorporate the chemically reacting vapor-phase species. We derive a general thermodynamic-based atomistic simulation framework for molten salt VLE prediction and show its application to NaCl. Its input quantities are temperature-dependent ideal-gas free energy data for the vapor phase reactions and density and residual chemical potential data for the liquid. If these are not available experimentally, the former may be predicted using standard electronic structure software, and the latter may be predicted by means of classical atomistic simulation methodology. The framework predicts the temperature dependence of vapor pressure, coexisting phase densities, vapor phase composition, and vaporization enthalpy. It also predicts the concentrations of vapor phase species present in minor amounts (such as the free ions), quantities that are extremely difficult to measure experimentally. We furthermore use the results to obtain an approximation to the complete VLE binodal dome and the critical properties. We verify the framework for molten NaCl, for which experimentally based density and chemical potential data are available in the literature. We then apply it to the analysis of NaCl simulation data for two commonly used atomistic force fields. The framework can be readily extended to molten salt mixtures and to ionic liquids.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

    1089-7690

  • Volume of the periodical

    156

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    144501

  • UT code for WoS article

    000874325800001

  • EID of the result in the Scopus database

    2-s2.0-85128487297