All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Anthropogenic and biogenic tracers in fine aerosol based on seasonal distributions of dicarboxylic acids, sugars and related compounds at a rural background site in Central Europe.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00567799" target="_blank" >RIV/67985858:_____/23:00567799 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1352231023000456?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1352231023000456?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.atmosenv.2023.119619" target="_blank" >10.1016/j.atmosenv.2023.119619</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Anthropogenic and biogenic tracers in fine aerosol based on seasonal distributions of dicarboxylic acids, sugars and related compounds at a rural background site in Central Europe.

  • Original language description

    Water-soluble organic compounds in aerosols are considered as relevant indicators of atmospheric processes. Fine particulate matter (PM1) samples were collected at National Atmospheric Observatory Košetice (NAOK), a rural background site representative of Central Europe, from September 27, 2013 to August 9, 2014. The samples (n = 146) were analyzed for water-soluble dicarboxylic acids (hereafter referred to as diacids) and related compounds to identify their seasonal variations and origins. Based on the Positive Matrix Factorization (PMF) analysis, we identified 5 factors – 2 anthropogenic, 2 biogenic and 1 background factors. In winter, anthropogenic contributions dominated in total organic matter (OM). Typical tracers for the main winter anthropogenic factor 1, connected with biomass burning (BB), were anhydrosugars together with maleic (M), methylmaleic (mM) and methylsuccinic (iC5) acids. This BB factor accounted for 64.1 ± 14.3% of OM in winter (annual avg. 36.7 ± 27.4%). A secondary anthropogenic factor 2 was characterized by phthalic (Ph), terephthalic (tPh) and ketomalonic (kC3) acids, which we assigned to secondary combustion products. The contribution of anthropogenic factor 2 was at a similar level throughout the year (12.5 ± 10.1% in OM). Mainly in winter, although also in spring and autumn, was the characteristic formation of diacids by secondary aqueous phase reactions, typically accompanied by lower temperatures, global radiation and ozone (O3) concentrations, yet higher relative humidity (RH) and aerosol liquid water content (ALWC). In summer, contributions of biogenic origin dominated. Secondary organic aerosols (SOA) of biogenic origin were typically represented by malonic (C3), methylmalonic (iC4), 3-oxopropanoic (ωC3), 4-ketopimelic (kC7), 7- oxoheptanoic (ωC7), pimelic (C7) and suberic (C8) acids. The factor, named as Biogenic 1, was dominant in summer with a contribution of 40.3 ± 19.6% in OM, while in other seasons, its contribution was below 10%. This factor was mainly characterized by a relative summer increase in the concentrations of kC7 and ωC7 acids. The second biogenic factor 2, also significant in summer (36.8 ± 20.5%) and dominant in spring (34.9 ± 19.9%), was represented by primary sugars (fructose, galactose and sucrose), normal chain diacids (oxalic (C2) to azelaic (C9)) and their oxidative precursors (ωC3, 4-oxobutanoic (ωC4) and 5-oxopentanoic (ωC5) acids). The photochemical formation of SOA in the gas phase was characteristic mostly for the summer season, accompanied by higher temperatures, global radiation and O3 concentrations, and lower RH. Additionally, background factor was resolved, which represents compounds with no distinctive seasonal variation and can therefore be of both anthropogenic and biogenic origin and contained mainly less oxidized compounds (methylglyoxal (MeGly), glyoxal (Gly), glyoxylic acid (ωC2) and pyruvic acid (Pyr)).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Atmospheric Environment

  • ISSN

    1352-2310

  • e-ISSN

    1873-2844

  • Volume of the periodical

    299

  • Issue of the periodical within the volume

    15 April

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    119619

  • UT code for WoS article

    000942570600001

  • EID of the result in the Scopus database

    2-s2.0-85147880215