All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bulk fluidity and apparent wall slip of deflocculated kaolin suspensions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F24%3A00585226" target="_blank" >RIV/67985858:_____/24:00585226 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0352994" target="_blank" >https://hdl.handle.net/11104/0352994</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0203613" target="_blank" >10.1063/5.0203613</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bulk fluidity and apparent wall slip of deflocculated kaolin suspensions

  • Original language description

    The influence of different electrolytes on the apparent wall slip (AWS) of aqueous kaolin suspensions is studied experimentally. The fluidity and AWS characteristics of purely aqueous and deflocculated kaolin suspensions are measured by gap-dependent rotational viscometry using unconventional cone–cone geometry. The applied sensors are made of different materials: stainless steel (smooth and sandblasted), titanium, and duralumin (with an anodized surface). Both the quality of the sensor surface and the presence of electrolytes strongly influence the observed AWS behavior. In the case of a purely aqueous 40% kaolin suspension, positive AWS (depleted layer formation) is measured on the stainless steel and titanium sensors, while negative AWS (stagnant layer formation) is observed on the anodized duralumin sensor. In the case of fully deflocculated suspensions, Newtonian flow behavior is observed with almost no measurable AWS effects. In the case of partially deflocculated suspensions, the type of deflocculant becomes important. While the presence of Na2CO3 or NaOH does not qualitatively change the AWS trends and only slightly increases them, the presence of SHMP (sodium hexametaphosphate) leads to positive AWS on anodized duralumin. However, the addition of NaCMC (sodium salt of carboxymethylcellulose) induces negative AWS on all the surfaces studied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics of Fluids

  • ISSN

    1070-6631

  • e-ISSN

    1089-7666

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    043109

  • UT code for WoS article

    001202924300023

  • EID of the result in the Scopus database

    2-s2.0-85190767284