On the generalised stretch function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F12%3A00376980" target="_blank" >RIV/67985874:_____/12:00376980 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mats.201100102" target="_blank" >http://dx.doi.org/10.1002/mats.201100102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mats.201100102" target="_blank" >10.1002/mats.201100102</a>
Alternative languages
Result language
angličtina
Original language name
On the generalised stretch function
Original language description
The tube theory represents a powerful tool for the description of polymer behaviour. In this theory, the term in the form of an integral over a full solid angle of a magnitude of deformed unit vector represents the stretch function. This term relates thelengths of the random walk of a molecule in deformed and undeformed states. For the case of the Doi-Edwards model, the integrand is raised to a power of one, however, for other models the power differs from one. The aim of this contribution is to derivean analytical algebraic approximation of a general form of this integral with the integrand raised to an arbitrary power within the physically justified interval between zero and two.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BK - Liquid mechanics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA103%2F09%2F2066" target="_blank" >GA103/09/2066: Analysis and development of constitutive equations for description of non-Newtonian fluids</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Macromolecular Theory and Simulations
ISSN
1022-1344
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
272-278
UT code for WoS article
000303920300007
EID of the result in the Scopus database
—