The large-time energy concentration in solutions to the Navier-Stokes equations with nonzero external forces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F13%3A00395206" target="_blank" >RIV/67985874:_____/13:00395206 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2013.01.010" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2013.01.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2013.01.010" target="_blank" >10.1016/j.jmaa.2013.01.010</a>
Alternative languages
Result language
angličtina
Original language name
The large-time energy concentration in solutions to the Navier-Stokes equations with nonzero external forces
Original language description
It is known that the turbulent solutions to the unforced Navier-Stokes equations exhibit a large-time energy concentration in the frequency space. If we suppose the existence of a nonzero time dependent external force f is an element of L-1((0, infinity); L-sigma(2)) in the equations, the situation is more complicated. It is possible to construct simple examples of solutions, in which the energy is asymptotically distributed over the entire spectrum of the Stokes operator. Further, we will show as the main result of this paper that there still exist wide classes of initial conditions and external forces yielding solutions with the large-time energy concentration analogical to the situation in the unforced Navier-Stokes equations. We will also show thatthe frequency spectrum of the solution does not generally relate to the frequency spectrum of the external force.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BK - Liquid mechanics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
402
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
147-156
UT code for WoS article
000315836900013
EID of the result in the Scopus database
—