All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis of sensing properties of thermoelectric vapor sensor made of carbon nanotubes/ethylene-octene copolymer composites

Result description

We designed a novel self-powered thermoelectric vapor sensor, whose thermogenerated voltage was modulated by chemical vapors. The sensor was made of composites of oxidized multi-walled carbon nanotubes within ethylene-octene copolymer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy of the multi-walled carbon nanotubes within ethylene-octene copolymer showed that the oxidation with HNO3 or KMnO4 enhanced its p-type electrical conductivity and that the thermoelectric power increase was proportional to the formation of new oxygen-containing functional groups on the surface of carbon nanotubes. When this composite was subjected to a saturated vapor of either heptane (aliphatic hydrocarbon), toluene (aromatic hydrocarbon) or ethanol (alcohol), its respective relative resistance increased in average by 3.6, 1.1 and 0.05. Consequently, the magnitude of voltage generated by the thermoelectric device containing the oxidized multi-walled carbon nanotubes within ethylene-octene copolymer determined the absence or presence of the aforementioned chemical vapors.

Keywords

Multiwalled carbon nanotubes (MWCN)aromatic hydrocarbonscarbon nanotubesethylenefourier transform infrared spectroscopyX ray photoelectron spectroscopy

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis of sensing properties of thermoelectric vapor sensor made of carbon nanotubes/ethylene-octene copolymer composites

  • Original language description

    We designed a novel self-powered thermoelectric vapor sensor, whose thermogenerated voltage was modulated by chemical vapors. The sensor was made of composites of oxidized multi-walled carbon nanotubes within ethylene-octene copolymer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy of the multi-walled carbon nanotubes within ethylene-octene copolymer showed that the oxidation with HNO3 or KMnO4 enhanced its p-type electrical conductivity and that the thermoelectric power increase was proportional to the formation of new oxygen-containing functional groups on the surface of carbon nanotubes. When this composite was subjected to a saturated vapor of either heptane (aliphatic hydrocarbon), toluene (aromatic hydrocarbon) or ethanol (alcohol), its respective relative resistance increased in average by 3.6, 1.1 and 0.05. Consequently, the magnitude of voltage generated by the thermoelectric device containing the oxidized multi-walled carbon nanotubes within ethylene-octene copolymer determined the absence or presence of the aforementioned chemical vapors.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20102 - Construction engineering, Municipal and structural engineering

Result continuities

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Carbon

  • ISSN

    0008-6223

  • e-ISSN

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    257-266

  • UT code for WoS article

    000386402700029

  • EID of the result in the Scopus database

    2-s2.0-84988027155

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Construction engineering, Municipal and structural engineering

Year of implementation

2016