All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The role of sonication of polyethyleneoxide solutions containing magnetic nanoparticles on morphology of nanofibrous mats

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F17%3A00474159" target="_blank" >RIV/67985874:_____/17:00474159 - isvavai.cz</a>

  • Alternative codes found

    RIV/68081723:_____/17:00474159 RIV/70883521:28110/17:63516987 RIV/70883521:28610/17:63516987

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The role of sonication of polyethyleneoxide solutions containing magnetic nanoparticles on morphology of nanofibrous mats

  • Original language description

    Properties of the resulting polymer nanofibers are often tailored by sonication technique applied prior or past an electrospinning process. The aim of this contribution is to evaluate morphology of nanofibrous mats formed by poly(ethylene oxide) with distributed magnetic nanoparticles (MNP) (about 20 nm in diameter) in dependence on time of sonication of the used polymer solutions. The solutions were exposed to sonication (intensity 200W, frequency 24 kHz) for 10, 30, and 60 minutes. It was shown that rheological characteristics (viscosity, storage and loss moduli) strongly depend on time of sonication (particularly phase angle) in contrast to electric conductivity and surface tension. For analysis of homogeneous distribution of MNP in polymer solution, the rheological measurements were carried out also in presence of external magnetic field. Magnetorheological efficiency (a relation of corresponding viscosities) was determined for 80, 170, and 255 mT. Consequently, changed rheological characteristics participate significantly in the process of electrospinning and resulting quality of the obtained nanofibrous mats. Qualitative changes were described bynmeans of scanning electron microscopy (variance of mean diameter of nanofibers), transmission electron microscopy (distribution of MNP within nanofibrous mats). Static magnetic properties were determined by a vibration sample magnetometer. It was shown that even distribution of MNP in the mats can be achieved by mere sonication process without application of external magnetic field during an electrospinning process. However, time of sonication generates a degree of embedding of MNP into individual nanofibers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/ED2.1.00%2F03.0111" target="_blank" >ED2.1.00/03.0111: Centre of Polymer Systems</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2016 8th International Conference on Nanomaterials - Research & Application. Conference proceedings

  • ISBN

    978-80-87294-71-0

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    20-24

  • Publisher name

    TANGER Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 19, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000410656100002