All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Coagulating different fractions of algal organic matter

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F19%3A00504381" target="_blank" >RIV/67985874:_____/19:00504381 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Coagulating different fractions of algal organic matter

  • Original language description

    Removal of undesirable algal organic matter (AOM) is of growing concern for drinking water treatment plants worldwide. This study investigates coagulation of different AOM fractions, i.e. AOM peptides-proteins and non-proteinaceous compounds. Coagulation conditions were optimized for each fraction separately (with using Al2(SO4)3 18 H2O as a coagulant) and the results were compared. Initial concentration of AOM was set to 5 mg/L DOC (dissolved organic carbon) for all the coagulation experiments. While good removal efficiencies (up to approximately 80%) were obtained for peptides-proteins by relatively low doses of coagulant (corresponding to 2 mg/L Al), non-proteinaceous fraction appeared to be difficult to coagulate (efficiency not exceeding 25%), even at high doses of coagulant (15 mg/L Al). Optimal coagulation pH (at which maximum AOM removal was obtained and residual Al concentrations were the lowest) also differed (pH values of 5.2-6.7 and 7.1-7.5 for peptides-proteins and non-proteinaceous fraction, respectively), which points out to the employment of different coagulation mechanisms. Also pre-hydrolyzed coagulant (polyaluminium chloride) was tested for coagulation of non-proteinaceous fraction, however, the efficiency did not increase and the optimum pH was shifted to even higher values (7.6-8.0). Additionally, both the AOM fractions were subjected to characterization in terms of their molecular weight (MW) and charge. These properties are important from the perspective of coagulation and contribute to elucidate its mechanisms. Moreover, the proportion of carbohydrates was determined in non-proteinaceous fraction. In general, low-MW compounds were less amenable to coagulation and their high content in non-proteinaceous matter (about 70% under 3 kDa) was among the reasons for its low removal. By contrast, high-MW proteins and high-MW carbohydrates were completely removed by coagulation. To conclude, the results imply that the AOM character significantly influence the process of coagulation in later treatment and that specific AOM fractions, reluctant to coagulate, require involvement of other treatment processes to avoid their detrimental effects on drinking water quality.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    <a href="/en/project/GA18-14445S" target="_blank" >GA18-14445S: Algal organic matter oxidation and its impact on ecotoxicity and water treatment by coagulation</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů