All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Locally space-time anisotropic regularity criteria for the Navier–Stokes equations in terms of two vorticity components

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F21%3A00541483" target="_blank" >RIV/67985874:_____/21:00541483 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs00021-020-00544-0" target="_blank" >https://link.springer.com/article/10.1007%2Fs00021-020-00544-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-020-00544-0" target="_blank" >10.1007/s00021-020-00544-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Locally space-time anisotropic regularity criteria for the Navier–Stokes equations in terms of two vorticity components

  • Original language description

    In this paper we prove the regularity of Leray weak solutions of the Navier–Stokes equations as long as the vorticity projection to a plane is bounded in the scale critical space Lp(0,T,Lq), 2/p+3/q=2, q∈(3/2,∞). The plane may vary in space and time while the unit vector v=v(x,t) orthogonal to the plane is locally a Hölder function in space with the coefficient 1/2. This extends previous works by Chae and Choe and by Miller. We further show that a generalized form of this criterion improves several other regularity criteria in terms of the vorticity direction known from the literature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-09628S" target="_blank" >GA18-09628S: Advanced flow-field analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    7

  • Pages from-to

    41

  • UT code for WoS article

    000630356600001

  • EID of the result in the Scopus database

    2-s2.0-85102710514