Locally space-time anisotropic regularity criteria for the Navier–Stokes equations in terms of two vorticity components
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F21%3A00541483" target="_blank" >RIV/67985874:_____/21:00541483 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs00021-020-00544-0" target="_blank" >https://link.springer.com/article/10.1007%2Fs00021-020-00544-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-020-00544-0" target="_blank" >10.1007/s00021-020-00544-0</a>
Alternative languages
Result language
angličtina
Original language name
Locally space-time anisotropic regularity criteria for the Navier–Stokes equations in terms of two vorticity components
Original language description
In this paper we prove the regularity of Leray weak solutions of the Navier–Stokes equations as long as the vorticity projection to a plane is bounded in the scale critical space Lp(0,T,Lq), 2/p+3/q=2, q∈(3/2,∞). The plane may vary in space and time while the unit vector v=v(x,t) orthogonal to the plane is locally a Hölder function in space with the coefficient 1/2. This extends previous works by Chae and Choe and by Miller. We further show that a generalized form of this criterion improves several other regularity criteria in terms of the vorticity direction known from the literature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-09628S" target="_blank" >GA18-09628S: Advanced flow-field analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
23
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
7
Pages from-to
41
UT code for WoS article
000630356600001
EID of the result in the Scopus database
2-s2.0-85102710514