All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Radiofrequency and microwave interactions between biomolecular systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F16%3A00468306" target="_blank" >RIV/67985882:_____/16:00468306 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10867-015-9392-1" target="_blank" >http://dx.doi.org/10.1007/s10867-015-9392-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10867-015-9392-1" target="_blank" >10.1007/s10867-015-9392-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Radiofrequency and microwave interactions between biomolecular systems

  • Original language description

    The knowledge of mechanisms underlying interactions between biological systems, be they biomacromolecules or living cells, is crucial for understanding physiology, as well as for possible prevention, diagnostics and therapy of pathological states. Apart from known chemical and direct contact electrical signaling pathways, electromagnetic phenomena were proposed by some authors to mediate non-chemical interactions on both intracellular and intercellular levels. Here, we discuss perspectives in the research of nanoscale electromagnetic interactions between biosystems on radiofrequency and microwave wavelengths. Based on our analysis, the main perspectives are in (i) the micro and nanoscale characterization of both passive and active radiofrequency properties of biomacromolecules and cells, (ii) experimental determination of viscous damping of biomacromolecule structural vibrations and (iii) detailed analysis of energetic circumstances of electromagnetic interactions between oscillating polar biomacromolecules. Current cutting-edge nanotechnology and computational techniques start to enable such studies so we can expect new interesting insights into electromagnetic aspects of molecular biophysics of cell signaling

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JA - Electronics and optoelectronics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-17102S" target="_blank" >GA15-17102S: Radio-frequency characterization of microtubules using micro- and nanosensors</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Biological Physics

  • ISSN

    0092-0606

  • e-ISSN

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000368637900001

  • EID of the result in the Scopus database

    2-s2.0-84954326804