All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

YAG Ceramic Nanocrystals Implementation into MCVD Technology of Active Optical Fibers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F18%3A00499887" target="_blank" >RIV/67985882:_____/18:00499887 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/18:00328892 RIV/60461373:22310/18:43917048

  • Result on the web

    <a href="http://dx.doi.org/10.3390/app8050833" target="_blank" >http://dx.doi.org/10.3390/app8050833</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app8050833" target="_blank" >10.3390/app8050833</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    YAG Ceramic Nanocrystals Implementation into MCVD Technology of Active Optical Fibers

  • Original language description

    Nanoparticle doping is an alternative approach the conventional solution doping method allowing the preparation of active optical fibers with improved optical and structural properties. The combination of the nanoparticle doping with MCVD process has brought new technological challenges. We present the preparation of fiber lasers doped with Er-doped yttrium aluminum garnet (Er:YAG) nanocrystals. These nanocrystals, prepared by a hydrothermal reaction, were analyzed by several structural methods to determine the mean nanocrystal size and an effective hydrodynamic radius. The nanocrystals were incorporated into silica frits with various porosity made by the conventional MCVD process. The Er:YAG-doped silica frits were processed into preforms, which were drawn into optical fibers. We studied the effect of the nanocrystal size and frit's porosity on the final structural and optical properties of prepared preforms and optical fibers. Selected optical fibers were tested as an active medium in a fiber ring laser setup and the characteristics of the laser were determined. Optimal laser properties were achieved for the fiber length of 7 m. The slope efficiency of the fiber laser was about 42%. Presented method can be simply extended to the deposition of other ceramic nanomaterials

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Sciences-Basel

  • ISSN

    2076-3417

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000437326800180

  • EID of the result in the Scopus database

    2-s2.0-85047275886