All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optical Fingerprint of Flat Substrate Surface and Marker-Free Lateral Displacement Detection with Angstrom-Level Precision

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F22%3A00565120" target="_blank" >RIV/67985882:_____/22:00565120 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1103/PhysRevLett.129.213201" target="_blank" >https://doi.org/10.1103/PhysRevLett.129.213201</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevLett.129.213201" target="_blank" >10.1103/PhysRevLett.129.213201</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optical Fingerprint of Flat Substrate Surface and Marker-Free Lateral Displacement Detection with Angstrom-Level Precision

  • Original language description

    We report that flat substrates such as glass coverslips with surface roughness well below 0.5 nm feature notable speckle patterns when observed with high-sensitivity interference microscopy. We uncover that these speckle patterns unambiguously originate from the subnanometer surface undulations, and develop an intuitive model to illustrate how subnanometer nonresonant dielectric features could generate pronounced interference contrast in the far field. We introduce the concept of optical fingerprint for the deterministic speckle pattern associated with a particular substrate surface area and intentionally enhance the speckle amplitudes for potential applications. We demonstrate such optical fingerprints can be leveraged for reproducible position identification and marker-free lateral displacement detection with an experimental precision of 0.22 nm. The reproducible position identification allows us to detect new nanoscopic features developed during laborious processes performed outside of the microscope. The demonstrated capability for ultrasensitive displacement detection may find applications in the semi-conductor industry and superresolution optical microscopy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    <a href="/en/project/GA22-11753S" target="_blank" >GA22-11753S: Megahertz Imaging of Microtubule Dynamics by Interferometric Scattering Microscopy</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review Letters

  • ISSN

    0031-9007

  • e-ISSN

    1079-7114

  • Volume of the periodical

    129

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    213201

  • UT code for WoS article

    000886221300006

  • EID of the result in the Scopus database

    2-s2.0-85143315758