All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Late Quaternary slip rates for the southern Elsinore fault in the Coyote Mountains, southern California from analysis of alluvial fan landforms and clast provenance, soils, and U-series ages of pedogenic carbonate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F19%3A00517425" target="_blank" >RIV/67985891:_____/19:00517425 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0169555X18300813?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0169555X18300813?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geomorph.2018.02.024" target="_blank" >10.1016/j.geomorph.2018.02.024</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Late Quaternary slip rates for the southern Elsinore fault in the Coyote Mountains, southern California from analysis of alluvial fan landforms and clast provenance, soils, and U-series ages of pedogenic carbonate

  • Original language description

    Offset alluvial fans along the Elsinore fault in the south-central Coyote Mountains were studied to resolve an average late Quaternary slip rate for this major western strand of the San Andreas fault system in southern California. Alluvial fans and their offsets were mapped using high-resolution DEMs combined with field observations of fan-surface morphology and the character of the soils developed in each fan remnant. Clast assemblage data was used to determine the source of each alluvial fan upstream of the fault, and U-series dating of pedogenic carbonate was used to estimate minimum ages of the alluvial fan surfaces. Forty U-Th dates on pedogenic carbonate confirm the utility of the technique for dating late Pleistocene alluvium in arid regions and suggest that age variation among late Pleistocene fans grouped on the basis of soils and geomorphic criteria may be significant. Based on these data, the southernmost segment of the Elsinore fault has sustained a slip rate of 2.4 +/- 0.4 mm/y for the past 60-70 ka and probably for the past 150 ka. Because displacement in the most recent surface rupture increases northwest of our slip rate sites, this rate is likely a minimum for the southern Elsinore fault, with the actual rate more likely close to 3 mm/y in the central part of the range. These new data confirm that slip gradients along individual fault segments must be considered when estimating pre-Holocene slip rates for seismic hazard estimates. These new results show that the southern Elsinore fault accounts for about 6% of the total relative motion between North America and the Pacific lithospheric plates in southernmost California. Assessment of previous estimates of slip in the most recent event suggests earthquakes of about Mw 6.8 and, when combined with the slip rate data, a recurrence of such events about every thousand years.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/LH12078" target="_blank" >LH12078: Assessment of Tectonic Movements on Active Faults</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geomorphology

  • ISSN

    0169-555X

  • e-ISSN

  • Volume of the periodical

    326

  • Issue of the periodical within the volume

    SI

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    22

  • Pages from-to

    68-89

  • UT code for WoS article

    000457811100006

  • EID of the result in the Scopus database

    2-s2.0-85043457341