All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High- and Low-Frequency Waveform Analysis the Marsquake of Sol 1222: Focal Mechanism, Centroid Moment Tensor Inversion and Source Time Function

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F24%3A00585015" target="_blank" >RIV/67985891:_____/24:00585015 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1029/2023EA003272" target="_blank" >https://doi.org/10.1029/2023EA003272</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2023EA003272" target="_blank" >10.1029/2023EA003272</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High- and Low-Frequency Waveform Analysis the Marsquake of Sol 1222: Focal Mechanism, Centroid Moment Tensor Inversion and Source Time Function

  • Original language description

    The seismometer onboard InSight NASA Mars mission discovered a seismically active planet. We focused on the strongest event named S1222a (4 May 2022, Mw similar to 4.7), which was recorded by the Very Broad Band sensors and associated channel ELYSE and is located 37.2 degrees away from InSight. We use two different methods based on a point source approach for an elastic, horizontally layered medium to retrieve source parameters of S1222a. In the first case, the seismic moment tensor inversion of high-frequency seismogram data is calculated using a matrix method for the direct waves. The process includes the generation of records in displacement using the frequency-wavenumber integration technique. A method of inversion of the moment tensor of direct P- and S-waves, less sensitive to path effects than reflected and transformed waves, is presented, which significantly increases the accuracy and reliability of the method. In the second case, tensors were calculated using common low-frequency full-waveform inversion and the tests to verify the plausibility of this solution obtained from the single station calculation were performed and the uncertainty estimations for inversions can be useful in future research.nnThe paper presents the seismic moment tensor solution and the focal mechanism for the largest event S1222a (4 May 2022, magnitude Mw4.7) recorded at one seismic station on Mars. We consider two different basic approaches to address the problem of the unavoidable inaccuracy of seismic waves modeling: focusing only on direct waves and using low-frequency full-waveform inversion. The moment tensor and focal mechanism of the S1222a event were obtained, as well as the optimal depth of a source. Despite the range of possible, it is encouraging that independent studies based on different methodologies, and using different structural models, point to reasonable solutions. The estimates of the focal mechanism when the single-station inversion is calculated are taken into account and the stability tests to verify our solutions were performed. The importance of this study lies in expanding the possibilities of how to calculate this kind of tasks.nnWe consider two different methods based on a point source approach to retrieve source parameters of S1222a A method of inversion of the moment tensor of direct waves, less sensitive to path effects than reflected and transformed waves, is presented We obtained the results of seismic tensor solution and time-independent focal mechanism.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10507 - Volcanology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Earth and Space Science

  • ISSN

    2333-5084

  • e-ISSN

    2333-5084

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    e2023EA003272

  • UT code for WoS article

    001189164700001

  • EID of the result in the Scopus database

    2-s2.0-85188526644