All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Local adaptation and future climate vulnerability in a wild rodent

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985904%3A_____%2F23%3A00580512" target="_blank" >RIV/67985904:_____/23:00580512 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41467-023-43383-z" target="_blank" >https://www.nature.com/articles/s41467-023-43383-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41467-023-43383-z" target="_blank" >10.1038/s41467-023-43383-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Local adaptation and future climate vulnerability in a wild rodent

  • Original language description

    As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus). We found that peripheral populations of bank vole in Britain are already at the extreme bounds of potential genetic adaptation and may require an influx of adaptive variation in order to respond. Analyses of adaptive loci suggest regional differences in climate variables select for variants that influence patterns of population adaptive resilience, including genes associated with antioxidant defense, and support a pattern of thermal/hypoxic cross-adaptation. Our findings indicate that understanding potential shifts in genomic composition in response to climate change may be key to predicting species' fate under future climates.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Communications

  • ISSN

    2041-1723

  • e-ISSN

    2041-1723

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    7840

  • UT code for WoS article

    001111154200020

  • EID of the result in the Scopus database

    2-s2.0-85178222793