Growth–climate relationships of Himalayan conifers along elevational and latitudinal gradients
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F17%3A00475740" target="_blank" >RIV/67985939:_____/17:00475740 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12310/17:43895557
Result on the web
<a href="http://dx.doi.org/10.1002/joc.4867" target="_blank" >http://dx.doi.org/10.1002/joc.4867</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/joc.4867" target="_blank" >10.1002/joc.4867</a>
Alternative languages
Result language
angličtina
Original language name
Growth–climate relationships of Himalayan conifers along elevational and latitudinal gradients
Original language description
High mountains are some of the most vulnerable regions to climate change and therefore a matter of global concern. Here, the climatic growth factors of conifers and their course in time and space along an elevational gradient in the northwestern Himalayan part of India were studied. Increment cores of Juniperus semiglobosa and Cedrus deodara (xeric species), and Abies pindrow and Picea smithiana (mesic species) were collected from thirteen sites. Tree-ring width and maximum latewood density were measured and cross-dated. The time-series were standardized and site- and species-level chronologies were built. Static and moving bootstrap correlation and response functions between the tree-ring chronologies and monthly climatic variables were computed. The largest climate changes in the region were increasing winter and early-spring temperatures and decreasing monsoon precipitation. The growth of all species was negatively correlated with pre-monsoon temperature, as the higher temperatures probably increased evapotranspiration and caused water deficit. The phenomenon was most pronounced in May, but also in June for the Juniperus at the northernmost, highest, and driest sites. The pre-monsoon temperature signal of the drought-prone Juniperus and Cedrus endured, while the signal of the climate-susceptible Abies and Picea at the mesic sites was unstable. Namely, the May temperature signal of Picea became significant since the second half of the last century whereas the signal of Abies shifted from May to April. This apparently related to the earlier onset of spring due to the accelerated warming in the region. Besides, maximum latewood density of Picea and Abies negatively correlated with May and June temperature, respectively. Additionally, the Cedrus benefitted from winter precipitation and the Abies and Picea from pre-monsoon rainfall. Counterintuitively, we detected no direct effect of monsoon precipitation decrease on the conifers because their growth was driven by pre-monsoon conditions, which changed only slightly.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
<a href="/en/project/GA13-13368S" target="_blank" >GA13-13368S: Plant diversity changes under climate warming: from regional flora to microhabitat adaptation and diversity patterns</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Climatology
ISSN
0899-8418
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
2593-2605
UT code for WoS article
000398859700030
EID of the result in the Scopus database
2-s2.0-84983488972