All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F18%3A00498959" target="_blank" >RIV/67985939:_____/18:00498959 - isvavai.cz</a>

  • Alternative codes found

    RIV/86652079:_____/18:00498959 RIV/00216208:11310/18:10385631

  • Result on the web

    <a href="http://dx.doi.org/10.1371/journal.pone.0209149" target="_blank" >http://dx.doi.org/10.1371/journal.pone.0209149</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0209149" target="_blank" >10.1371/journal.pone.0209149</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics

  • Original language description

    Insects represent one of the most abundant groups of herbivores, and many of them have significant impacts on the dynamics of plant populations. As insects are very sensitive to changes in climatic conditions, we hypothesize that their effects on plant population dynamics will depend on climatic conditions. Knowledge of the variation in herbivore effects on plant population dynamics is, however, still rather sparse. We studied population dynamics and herbivore damage at the individual plant level of Salvia nubicola along a wide altitudinal gradient representing a range of climatic conditions. Using integral projection models, we estimated the effect of changes in herbivore pressure on plant populations in different climates and habitat types. Since we recorded large differences in the extent of herbivore damage along the altitudinal gradient, we expected that the performance of plants from different altitudes would be affected to different degrees by herbivores. Indeed, we found that populations from low altitudes were better able to withstand increased herbivore damage, while populations from high altitudes were suppressed by herbivores. However, the pattern described above was evident only in populations from open habitats. In forest habitats, the differences in population dynamics between low and high altitudes were largely diminished. The effects of herbivores on plants from different altitudes were thus largely habitat specific. Our results indicate potential problems for plant populations from high altitudes in open habitats because of increased herbivore damage. However, forest habitats may provide refuges for the plants at these high altitudes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/GA17-10280S" target="_blank" >GA17-10280S: Variability in plant traits as a tool to cope with climate change – from phenotypes to genes and back again</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

    000453451000073

  • EID of the result in the Scopus database

    2-s2.0-85058703057