All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extensive sampling and high-throughput sequencing reveal Posidoniomyces atricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F19%3A00510132" target="_blank" >RIV/67985939:_____/19:00510132 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/19:10396400

  • Result on the web

    <a href="http://hdl.handle.net/11104/0302060" target="_blank" >http://hdl.handle.net/11104/0302060</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3897/mycokeys.55.35682" target="_blank" >10.3897/mycokeys.55.35682</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extensive sampling and high-throughput sequencing reveal Posidoniomyces atricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica

  • Original language description

    Seagrasses provide invaluable ecosystem services yet very little is known about their root mycobiont diversity and distribution. Here we focused on the dominant Mediterranean seagrass Posidonia oceanica and assessed its root mycobiome at 32 localities covering most of the ecoregions in the NW Mediterranean Sea using light and scanning electron microscopy and tag-encoded 454-pyrosequencing. Microscopy revealed that the recently discovered dark septate endophytic association specific for P. oceanica is present at all localities and pyrosequencing confirmed that the P. oceanica root mycobiome is dominated by a single undescribed pleosporalean fungus, hitherto unknown from other hosts and ecosystems. Its numerous slow-growing isolates were obtained from surface-sterilised root segments at one locality and after prolonged cultivation, several of them produced viable sterile mycelium. To infer their phylogenetic relationships we sequenced and analysed the large (LSU) and small (SSU) subunit nrDNA, the ITS nrDNA and the DNA-directed RNA polymerase II (RPB2). The fungus represents an independent marine biotrophic lineage in the Aigialaceae (Pleosporales) and is introduced here as Posidoniomyces atricolor gen. et sp. nov. Its closest relatives are typically plantassociated saprobes from marine, terrestrial and freshwater habitats in Southeast Asia and Central America. This study expands our knowledge and diversity of the Aigialaceae, adds a new symbiotic lifestyle to this family and provides a formal name for the dominant root mycobiont of the dominant Mediterranean seagrass.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10617 - Marine biology, freshwater biology, limnology

Result continuities

  • Project

    <a href="/en/project/LO1417" target="_blank" >LO1417: Centre of Experimental Plant Biology of CU</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MycoKeys

  • ISSN

    1314-4057

  • e-ISSN

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    Jun 26

  • Country of publishing house

    BG - BULGARIA

  • Number of pages

    28

  • Pages from-to

    59-86

  • UT code for WoS article

    000473091600001

  • EID of the result in the Scopus database

    2-s2.0-85069044167